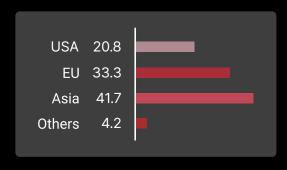
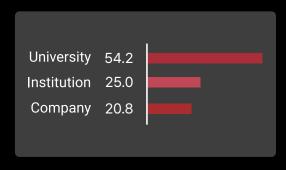


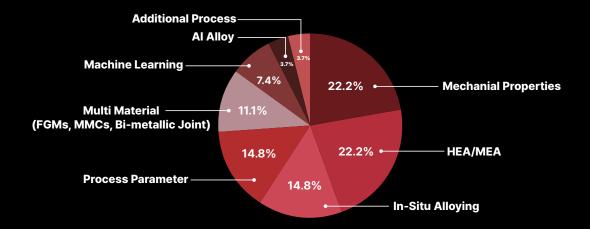
MX-Lab


Material Research Machine DED in Additive Manufacturing

Global Customers of MX-Lab


Since its launch, MX-Lab has been sold to universities and research institutions around the world and continues to be used in numerous high-quality materials researches.

MX-Lab Sales Statistics (%)



By Region

By Institute Type

Distribution of Papers by Field

Major Papers Written Using MX-Lab (Partial)

Year	Title	Writing Institute	Journal	Keyword
2020	Effects of Laser Power on the Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Direct Energy Deposition	Gyeongsang Univ., POSTECH	Metals and Materials International	Mechanical Properties
2022	Tailoring microstructure with spatial heteroge-neity in CoCrFeMnNi high-entropy alloy via laser surface relaxatoin	POSTECH	Materials Science and Engineering : A	HEA
2022	Microstructure and Mechanical Properties of P21-STS316L Functionally Graded Material Manufactured by Direct Energy Deposition 3D Print	KIIT, Pusan National Univ.	Metals 2022	Multi Material
2022	Evaluation of in-situ alloyed Inconel 625 from elemental powders by laser directed energy deposition	Univ. of Cincinnati, Univ. of North Dakota	Materials Science and Engineering : A	In-Situ Alloying
2022	Microstructure and mechanical properties of laser DED produced crack-free AI 7075 alloy: Effect of process parameters and heat treatment	Univ. of Cincinnati, Univ. of North Dakota	Materials Science and Engineering : A	Al Alloy
2023	Virtual surface morphology generation of Ti-6Al-4V directed energy deposition via conditional generative adversarial network	UNIST, POSTECH	Virtual and Physical Prototyping	Machine Learning

Scan for more information

http://insstek.com